Identities for Algebras Obtained from the Cayley-dickson Process

نویسندگان

  • Murray Bremner
  • Irvin Hentzel
چکیده

The Cayley-Dickson process gives a recursive method of constructing a nonassociative algebra of dimension 2 for all n 0, beginning with any ring of scalars. The algebras in this sequence are known to be flexible quadratic algebras; it follows that they are noncommutative Jordan algebras: they satisfy the flexible identity in degree 3 and the Jordan identity in degree 4. For the integral sedenion algebra (the double of the octonions) we determine a complete set of generators for the multilinear identities in degrees 5. Since these identities are satisfied by all flexible quadratic algebras, it follows that a multilinear identity of degree 5 is satisfied by all the algebras obtained from the Cayley-Dickson process if and only if it is satisfied by the sedenions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes over subsets of algebras obtained by the Cayley-Dickson process

In this paper, we define binary block codes over subsets of real algebras obtained by the Cayley-Dickson process and we provide an algorithm to obtain codes with a better rate. This algorithm offers more flexibility than other methods known until now, similar to Lenstra's algorithm on elliptic curves compared with p − 1 Pollard's algorithm.

متن کامل

Some Equations in Algebras Obtained by the Cayley-dickson Process

In this paper we try to solve three fundamental equations ax = xb , ax = x̄b and x = a , in a division algebra, A over K, obtained with the Cayley-Dickson process (see [Br; 67] ), in the case when Kis an arbitrary field of characteristic 6= 2. §

متن کامل

Division algebras with dimension 2 t , t ∈ N

In this paper we find a field such that the algebras obtained by the Cayley-Dickson process are division algebras of dimension 2t,∀t ∈ N. Subject Classification: 17D05; 17D99. From Frobenius Theorem and from the remark given by Bott and Milnor in 1958, we know that for n ∈ {1, 2, 4} we find the real division algebras over the real field R. These are: R, C, H(the real quaternion algebra), O(the ...

متن کامل

How to Obtain Division Algebras from a Generalized Cayley-dickson Doubling Process

We generalize the classical Cayley-Dickson doubling process starting with a quaternion algebra over a field F by allowing the scalar in the doubling to be an invertible element in the algebra. We investigate the resulting eight-dimensional algebras over F and show that they are division algebras for all scalars chosen in D outside of the base field F , if D is a division algebra.

متن کامل

Automorphism groups of real Cayley-Dickson loops

The Cayley-Dickson loop Cn is the multiplicative closure of basic elements of the algebra constructed by n applications of the Cayley-Dickson doubling process (the first few examples of such algebras are real numbers, complex numbers, quaternions, octonions, sedenions). We will discuss properties of the Cayley-Dickson loops, show that these loops are Hamiltonian and describe the structure of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001